Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308075, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626376

RESUMO

Manipulating thermal properties of materials can be interpreted as the control of how vibrations of atoms (known as phonons) scatter in a crystal lattice. Compared to a perfect crystal, crystalline solids with defects are expected to have shorter phonon mean free paths caused by point defect scattering, leading to lower lattice thermal conductivities than those without defects. While this is true in many cases, alloying can increase the phonon mean free path in the Cd-doped AgSnSbSe3 system to increase the lattice thermal conductivity from 0.65 to 1.05 W m-1 K-1 by replacing 18% of the Sb sites with Cd. It is found that the presence of lone pair electrons leads to the off-centering of cations from the centrosymmetric position of a cubic lattice. X-ray pair distribution function analysis reveals that this structural distortion is relieved when the electronic configuration of the dopant element cannot produce lone pair electrons. Furthermore, a decrease in the Grüneisen parameter with doping is experimentally confirmed, establishing a relationship between the stereochemical activity of lone pair electrons and the lattice anharmonicity. The observed "harmonic" behavior with doping suggests that lone pair electrons must be preserved to effectively suppress phonon transport in these systems.

2.
Adv Mater ; 34(38): e2204132, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944565

RESUMO

Cation disordering is commonly found in multinary cubic compounds, but its effect on electronic properties has been neglected because of difficulties in determining the ordered structure and defect energetics. An absence of rational understanding of the point defects present has led to poor reproducibility and uncontrolled conduction type. AgBiSe2 is a representative compound that suffers from poor reproducibility of thermoelectric properties, while the origins of its intrinsic n-type conductivity remain speculative. Here, it is demonstrated that cation disordering is facilitated by BiAg charged antisite defects in cubic AgBiSe2 which also act as a principal donor defect that greatly controls the electronic properties. Using density functional theory calculations and in situ Raman spectroscopy, how saturation annealing with selenium vapor can stabilize p-type conductivity in cubic AgBiSe2 alloyed with SnSe at high temperatures is elucidated. With stable and controlled hole concentration, a peak is observed in the weighted mobility and the density-of-states effective mass in AgBiSnSe3 , implying an increased valley degeneracy in this system. These findings corroborate the importance of considering the defect energetics for exploring the dopability of ternary thermoelectric chalcogenides and engineering electronic bands by controlling self-doping.

3.
RSC Adv ; 12(16): 9698-9703, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424952

RESUMO

Transition metal compounds based on silver (Ag) and palladium (Pd) are extensively used as catalysts in the petrochemical industries. The catalytic activities of Ag and Pd decrease over time and hence need to be discarded. The recovery of elements like Ag from waste catalyst is essential because of its limited availability and cost, and it is environmentally beneficial with regards to recycling. In this study, Pd and Ag were leached from waste catalyst providing an alternative source suitable for a Ag paste electrode. Through an efficient reduction process, AgCl particles were obtained which serve as a precursor to synthesize Ag using ammonia as the solvent. The obtained Ag was fabricated to Ag paste by using mixed dispersion and solvent. The electrical resistivity of the Ag paste was recorded as 6.14 µΩ cm at 417 °C in a hydrogen atmosphere.

4.
ACS Appl Mater Interfaces ; 14(1): 1270-1279, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34979804

RESUMO

Charge carrier transport and corresponding thermoelectric properties are often affected by several parameters, necessitating a thorough comparative study for a profound understanding of the detailed conduction mechanism. Here, as a model system, we compare the electronic transport properties of two layered semiconductors, Sb2Si2Te6 and Bi2Si2Te6. Both materials have similar grain sizes and morphologies, yet their conduction characteristics are significantly different. We found that phase boundary scattering can be one of the main factors for Bi2Si2Te6 to experience significant charge carrier scattering, whereas Sb2Si2Te6 is relatively unaffected by the phenomenon. Furthermore, extensive point defect scattering in Sb2Si2Te6 significantly reduces its lattice thermal conductivity and results in high zT values across a broad temperature range. These findings provide novel insights into electron transport within these materials and should lead to strategies for further improving their thermoelectric performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...